Polycaprolactone / bioactive glass hybrid scaffolds with doping agents <u>Cédric Bossard</u>¹, Henri Granel², Édouard Jallot¹, Hubert Guibourt,³ Alexandre Boccon,³ Yohann Wittrant², Jonathan Lao¹

- 1. Université Clermont Auvergne, CNRS/IN2P3, LPC, F-63000 Clermont-Ferrand, France. cedric.bossard@clermont.in2p3.fr
- 2. Université Clermont Auvergne, INRA, UNH, CRNH Auvergne, F-63000 Clermont-Ferrand, France
- 3. OST Développement, F-63000 Clermont-Ferrand, France

Type of contribution desired: ✓OI	ZODAT	□ POSTER
	Y JUKAL	□ PUSIEK

Keywords: Bioactive glass; organic-inorganic hybrid; scaffolds; doping

ABSTRACT

Introduction. Bioactive glasses (BG) bond to bone and stimulate bone regeneration [1], but their brittleness limits their use to low load-bearing applications. The toughness of the material can be greatly enhanced by combining BG with a polymer to produce composites or sol-gel hybrids [2]. Unlike conventional composites, BG-polymer hybrids behave as a single phase thanks to the interpenetration of the organic and inorganic networks at a molecular level [3]. In the present work, 3-dimensional polycaprolactone (PCL) / BG hybrid scaffolds with well-controlled porosity were synthesised through a sol-gel process that allowed the incorporation of organic and inorganic doping agents.

Experimental. Homogeneous hybrids containing 70 wt.% PCL and 30 wt.% BG were obtained and scaffolds were prepared by a microsphere leaching technique. The BG was a binary system of 75 wt.% SiO_2 and 25 wt.% CaO. Hybrids were also doped with Sr^{2+} ions or fisetin. The macroporous structure, the *in vitro* apatite-forming ability and the *in vivo* performance of PCL-BG hybrid scaffolds were evaluated.

Results and discussion. The macroporous structure could be finely tuned thanks to the fabrication process. The selected scaffolds had pores of 300 to 500 μ m and interconnections of 100 to 200 μ m, resulting in a porosity of 68 % \pm 1 %. PCL-BG hybrid scaffolds rapidly formed biomimetic apatite when soaked in SBF at 37°C. After 3 months of implantation in a mouse critical-size calvarial defect, hybrid scaffolds allowed faster bone regeneration (32 % \pm 3 %) compared to commercialised bovine bone (16 % \pm 5 %). Bone reconstruction was twice as fast when hybrid scaffolds were doped with Sr²⁺ ions (58 % \pm 7 %) or fisetin (55 % \pm 7 %).

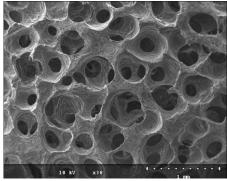


Figure 1: PCL-BG hybrid scaffold.

References.

- [1] Xynos ID, Edgar AJ, Buttery LD, Hench LL, Polak JM, J Biomed Mater Res 2001; 2: 151-157.
- [2] Jones JR, Acta Biomater. 2013; 9: 4457-4486.
- [3] Lao J, Dieudonné, Fayon F, Montouillout V, Jallot E, J Mater Chem B 2016; 4: 2486-2497.